Detecting Forgery Face Images Based on Local Feature Descriptors (SIFT)
Marym Taha Alsaed
Technical College of Administration, Middle Technical University, Baghdad, Iraq
Prof. Dr. Ali Mohammad Sahan
Department of Information Technology, Technical -College of Administration, Middle Technical University, Baghdad, Iraq
Download PDF http://doi.org/10.37648/ijps.v20i01.013
Abstract
Digital facial images represent people's identity and play a pivotal role in documenting events and their visual communication. Fake faces are detected using image processing and feature extraction techniques. The proposed methodology relies on a series of pre-steps that enhance the quality of visual representation and reduce computational complexity. The image size is reduced by half at each stage, the image is converted to grayscale, and the features are extracted using the SFT algorithm. A pre-trained deep learning model, EfficientNet-B0, was also applied to classify face images into real and fake ones. The FaceForensics++ database was used. The model was tested using noise added to images to evaluate its robustness and accuracy under different noise conditions. It was tested on salt-and-pepper noise and Gaussian noise, and horizontal geometric displacement, a type of image noise, was applied. Satisfactory results were achieved, with the accuracy of the proposed technique reaching 99.85%.
Keywords:
SIFT; CLAHE; FaceForensics++; CNN; EfficientNet-B0; deep neural network; DoG; Gaussian noise; Horizontal misalignment noise; salt and pepper noise
References
- Afchar, D., Nozick, V., Yamagishi, J., & Echizen, I. (2018). Mesonet: a compact facial video forgery detection network. In 2018 IEEE International Workshop on Information Forensics and Security (WIFS) (pp. 1–7). IEEE.
- Ali, K., & Hughes, C. E. (2019). All-in-one: Facial expression transfer, editing and recognition using a single network [Unpublished manuscript].
- Anderson, J., & Akram, N. J. (2024). Denoising Diffusion Probabilistic Models (DDPM) Dynamics: Unraveling Change Detection in Evolving Environments. International Conference on Systems, 10(1), 1–10.
- Ba, K., et al. (2024a). [Title omitted for brevity].
- Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning. Springer
- Boediman, E. P. J. (2025). Exploring the impact of deepfake technology on public trust and media manipulation: A scoping review. Journal of Fake Media Analysis, 19(2), 131–152.
- Boutros, F., Klemt, M., Fang, M., Kuijper, A., & Damer, N. (2023). Exfacegan: Exploring identity directions in GAN’s learned latent space for synthetic identity generation. In 2023 IEEE International Joint Conference on Biometrics (IJCB) (pp. 1–10). IEEE.
- Buades, A., Coll, B., & Morel, J.-M. (2005). A non-local algorithm for image denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (Vol. 2, pp. 60–65). IEEE.
- Chakole, V. V., & Dixit, S. R. (2025). MLbFA: A Machine Learning-Based Face Anti-Spoofing Detection Framework under Replay Attack. International Journal of Electronic and Computer Engineering Systems, 16(4), 321–332.
- Chan, R. H., Ho, C.-W., & Nikolova, M. (2005). Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14(10), 1479–1485.
- Chen, X., et al. (2016). Variational lossy autoencoder. arXiv preprint
- Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., & Choo, J. (2018). StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8789–8797).
- Ciftci, U. A., Demir, I., & Yin, L. (2020). FakeCatcher: Detection of synthetic portrait videos using biological signals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 8719–8732.
- Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Hinton, G. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
- Durall, R., Keuper, M., & Keuper, J. (2019). Watch your up-convolution: CNN based generative deep neural networks are failing to reproduce spectral distributions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7890–7899).
- Fang, S., et al. (2025). [Title omitted for brevity].
- Fernandes, S., Raj, S., Ortiz, E., Vintila, I., Salter, M., Urosevic, G., & Jha, S. (2019). Predicting heart rate variations of deepfake videos using neural ODE. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (pp. 1–9).
- Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., & Holz, T. (2020). Leveraging frequency analysis for deep fake image recognition. In International Conference on Machine Learning (pp. 3247–3258). PMLR.
- Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27.
- Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3313–3332.
- Gu, Z., et al. (2022). [Title omitted for brevity].
- He, K., Zhang, X., Ren, & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
- Hernandez-Ortega, J., Tolosana, R., Fierrez, J., & Morales, A. (2020). DeepFakes detection based on heart rate estimation: A generalizable approach. arXiv preprint arXiv:2010.00400.
- Huang, T., Yang, G., & Tang, G. (1979). A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(1), 13–18.
- Jähne, B. (2005). Digital image processing. Springer.
- Jain, A. K. (1989). Fundamentals of digital image processing. Prentice Hall
- Jiang, L., Li, R., Zhang, Z., Fang, S., & Ma, C. (2024). EmojiDiff: Advanced Facial Expression Control with High Identity Preservation in Portrait Generation. arXiv preprint arXiv:2403.12345.
- Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.
- Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4401–4410).
- Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
- Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., & Guo, B. (2020). Face X-ray for more general face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5001–5010).
- Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2020b). Celeb-DF: A large-scale challenging dataset for deepfake forensics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3207–3216).
- Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2), 79–116.
- Lindeberg, T. (2012). Scale invariant feature transform. Scholarpedia, 7(5), 10491
- Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision (Vol. 2, pp. 1150–1157). IEEE.
- Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.
- Loy, C. C. (2018). ReenactGAN: Learning to Reenact Faces via Boundary Transfer. arXiv preprint arXiv:1807.11079.
- Luo, Y., Zhang, Y., Yan, J., & Liu, W. (2021). Generalizing face forgery detection with high-frequency features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 16317–16326).
- Man, Q., Cho, Y.-I., Gee, S.-J., Kim, W.-J., & Jang, K.-A. (2024). GAN-Based High-Quality Face-Swapping Composite Network. Electronics, 13(15), 3092.
- Masi, I., Killekar, A., Mascarenhas, R. M., Gurudatt, S. P., & AbdAlmageed, W. (2020). Two-branch recurrent network for isolating deepfakes in videos. In European Conference on Computer Vision (pp. 667–684). Springer.
- Miao, C., et al. (2022). HFI-Net: Hierarchical feature integration network for face forgery detection. arXiv preprint arXiv:2203.12145.
- Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630.
- Musa, P., Al Rafi, F., & Lamsani, M. (2018). A Review: Contrast-Limited Adaptive Histogram Equalization (CLAHE) methods to help the application of face recognition. In 2018 Third International Conference on Informatics and Computing (ICIC) (pp. 1–6). IEEE.
- Nguyen, H. H., Yamagishi, J., & Echizen, I. (2024). [Title omitted for brevity].
- Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press
- Nightingale, S. J., Wade, K. A., & Mind, and Media. (2022). Identifying and minimising the impact of fake visual media: Current and future directions. Journal of Visual Media Integrity, 1, e15.
- Nirkin, Y., Wolf, L., Keller, Y., & Hassner, T. (2021). DeepFake detection based on discrepancies between faces and their context. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 6111–6121.
- Ognyanova, K., Lazer, D., Robertson, R. E., & Wilson, C. (2020). Misinformation in action: Fake news exposure is linked to lower trust in media, higher trust in government when your side is in power. Harvard Kennedy School Misinformation Review, 1(4).
- Olivier, N., Baert, K., Danieau, F., Multon, F., & Avril, Q. (2023). Facetunegan: Face autoencoder for convolutional expression transfer using neural generative adversarial networks. Computers & Graphics, 110, 69–85.
- Qi, H., Guo, Q., Juefei-Xu, F., Xie, X., Ma, L., & Feng, W. (2020). DeepRhythm: Exposing deepfakes with attentional visual heartbeat rhythms. In Proceedings of the 28th ACM International Conference on Multimedia (pp. 4318–4327).
- Qian, Y., Yin, G., Sheng, L., Chen, Z., & Shao, J. (2020). Thinking in frequency: Face forgery detection by mining frequency-aware clues. In Proceedings of the European Conference on Computer Vision (pp. 86–103).
- Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 38(1), 35–44.
- Rochow, A., Schwarz, M., & Behnke, S. (2024). Fsrt: Facial scene representation transformer for face reenactment from factorized appearance head-pose and facial expression features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7716–7726).
- Rossner, M., & Yamada, K. M. (2004). What's in a picture? The temptation of image manipulation. The Journal of Cell Biology, 166(1), 11–15. https://doi.org/10.1083/jcb.200406019
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.
- Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (pp. 6105–6114). PMLR.
- Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., & Nießner, M. (2016). Face2Face: Real-time face capture and reenactment of RGB videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2387–2395).
- Vaccari, C., & Chadwick, A. (2020). Deepfakes and disinformation: Exploring the impact of synthetic political video on deception, uncertainty, and trust in news. *Social Media + Society, 6*(1), 2056305120903408.
- Verdoliva, L. (2020). Media forensics and deepfakes: An overview. IEEE Journal of Selected Topics in Signal Processing, 14(5), 910–932.
- Wang, J., & Chow, K. P. (2023). [Title omitted for brevity]
- Wang, S., et al. (2022). M2TR: Multi-modal multi-scale transformers for deepfake detection. In Proceedings of the IEEE International Conference on Image Processing (pp. 1–5).
- Wang, Z., et al. (2023). [Title omitted for brevity].
- Wu, H., Zhou, J., & Tian, J. (2020). Robust image forgery detection against transmission over online social networks. IEEE Transactions on Information Forensics and Security, 15, 3811–3825.
- Xiang, W., Gao, P., & Peng, Q. (2015). Robust multiview three-dimensional video communications based on distributed video coding. IEEE Systems Journal, 11(4), 2456–2466.
- Yang, X., Li, Y., & Lyu, S. (2019). Exposing deep fakes using inconsistent head poses. In *ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* (pp. 8261–8265).
- Yin, B., et al. (2023). [Title omitted for brevity].
- Zhang, J., et al. (2020). Freenet: Multi-identity face reenactment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5326–5335).
- Zhang, K., et al. (2022). [Title omitted for brevity]
- Zhang, Y., et al. (2024). [Title omitted for brevity].
- Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., & Yu, N. (2021). Multi-attentional deepfake detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2185–2194).
- Zhou, P., Han, X., Morariu, V. I., & Davis, L. S. (2017). Two-stream neural networks for tampered face detection. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 1831–1839).
- Zuama, L. R., Susanto, A., Santosa, S., Gan, H.-S., & Ojugo, A. A. (2025). High-Performance Face Spoofing Detection using Feature Fusion of FaceNet and Tuned DenseNet201. Journal of Facial Analysis and Identification Technologies, 1(4), 385–400.