Email: info@ijps.in | Mob: +91-9555269393

Submit Manuscript

Abstract

An Effective Technique for Deepfake Video Detection

Baneen Musa Mahdi

Technical College of Management - Baghdad, Middle Technical University, Baghdad, Iraq

Prof. Dr. Ali Mohammad Sahan

Technical College of Management - Baghdad, Middle Technical University, Baghdad, Iraq

192 - 201
Vol.20, Issue 1, Jul-Dec , 2025
Receiving Date: 2025-07-18
Acceptance Date: 2025-09-01
Publication Date: 2025-09-07
Download PDF

http://doi.org/10.37648/ijps.v20i01.014

Abstract

As fake videos cause numerous problems affecting people's lives in various fields, they have received increasing attention. In this paper, we present a successful method for detecting fake videos based on the Scattered Wavelet Transform (SWT) and a pre-trained deep learning model, EfficientNet-B0. Several experiments were conducted on the fake video detection dataset to evaluate the effectiveness of the proposed method. The Deepfake Detection database (DFD) database was used. The model was tested by adding noise to images to evaluate its robustness and accuracy under various noise conditions. It was tested on salt-and-pepper noise and white Gaussian noise, and horizontal misalignment noise, a type of noise commonly used in fake video detection, was applied. 98% accuracy was achieved using the noise.


Keywords: EfficientNet B0; Scatter Wavelet transform; deepfake video detection; Deepfake Detection database.


References
  1. Agarwal, S., & Farid, H. (2021). Detecting deep-fake videos from aural and oral dynamics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 981– 989). https://doi.org/10.1109/TCSVT.2023.3281474
  2. l-Tamimi, M. S. H. (2019). Combining convolutional neural networks and slantlet transform for an effective image retrieval scheme. International Journal of Electrical and Computer Engineering, *9*(5), 4382– 4395. https://doi.org/10.11591/ijece.v9i5.pp4382-4395
  3. Aneja, S., & Nießner, M. (2020). Generalized zero and few-shot transfer for facial forgery detection. arXiv preprint. https://arxiv.org/abs/2006.11863
  4. Bar, L., Sochen, N., & Kiryati, N. (2005). Image deblurring in the presence of salt-and-pepper noise. In Proceedings of the International Conference on Scale-Space Theories in Computer Vision (pp. 107–118). Springer. https://doi.org/10.1007/11408031_10
  5. Brodarič, M., Štruc, V., & Peer, P. (2024). Cross-dataset deepfake detection: Evaluating the generalization capabilities of modern deepfake detectors. In Proceedings of the 27th Computer Vision Winter Workshop (CVWW) (pp. 47–56).
  6. Cao, J., Ma, C., Yao, T., Chen, S., Ding, S., & Yang, X. (2022). End-to-end reconstruction-classification learning for face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4113–4122).
  7. Chen, S., Yao, T., Chen, Y., Ding, J., Li, J., & Ji, R. (2021). Local relation learning for face forgery detection. In Proceedings of the AAAI Conference on Artificial Intelligence, *35*(2), 1081–1088.
  8. Dey, S., Singh, P., & Saha, G. (2023). Wavelet scattering transform for improving generalization in low-resourced spoken language identification. arXiv preprint. https://arxiv.org/abs/2310.00602
  9. Eickenberg, M., Exarchakis, G., Hirn, M., & Mallat, S. (n.d.). Solid harmonic wavelet scattering for molecular energy regression. Unpublished manuscript.
  10. Gerstner, C. R., & Farid, H. (2022). Detecting real-time deep-fake videos using active illumination. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 53– 60). https://doi.org/10.1007/978-3-031-73661-2_22
  11. Ghosh, A., Sufian, A., Sultana, F., Chakrabarti, A., & De, D. (2019). Fundamental concepts of convolutional neural network. In Intelligent Systems Reference Library (Vol. 172, pp. 519–567). Springer. https://doi.org/10.1007/978-3- 030-32644-9_36
  12. Hadi, T. H. (2024). Deep learning-based DDoS detection in network traffic data. International Journal of Electrical and Computer Engineering Systems, *15*(5), 407–414. https://doi.org/10.32985/ijeces.15.5
  13. Haliassos, A., Vougioukas, K., Petridis, S., & Pantic, M. (2021). Lips don't lie: A generalisable and robust approach to face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5039–5049).
  14. Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y., Yang, Z., Zhang, Y., & Tao, D. (2023). A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, *45*(1), 87–110. https://doi.org/10.1109/TPAMI.2022.3152247
  15. Hu, J., Liao, X., Gao, D., Tsutsui, S., Wang, Q., Qin, Z., & Shou, M. Z. (2023). Mover: Mask and recovery based facial part consistency aware method for deepfake video detection. arXiv preprint. https://arxiv.org/abs/2303.01740
  16. Hwang, H., & Haddad, R. A. (1995). Adaptive median filters: New algorithms and results. IEEE Transactions on Image Processing, *4*(4), 499–502. https://doi.org/10.1109/83.370679
  17. Ji, L., Wang, Y., Chen, K., Wu, Y., & Huang, D. (2024). Distinguish any fake videos: Unleashing the power of largescale data and motion features. arXiv preprint. https://arxiv.org/abs/2405.15343
  18. Kaur, A., Hoshyar, A. N., Saikrishna, V., Firmin, S., & Xia, F. (2024). Deepfake video detection: Challenges and opportunities. Artificial Intelligence Review, *57*(6), Article 159. https://doi.org/10.1007/s10462-024-10810-6
  19. Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2020). Celeb-df: A large-scale challenging dataset for deepfake forensics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3207–3216).
  20. Qi, P., Cao, J., Li, Y., Liu, X., Meng, Y., & Shen, W. (2023). Fakesv: A multimodal benchmark with rich social context for fake news detection on short video platforms. In Proceedings of the AAAI Conference on Artificial Intelligence, *37*(12), 14444–14452. https://doi.org/10.1609/aaai.v37i12.26689
  21. Rehman, M., Ahmed, F., Khan, M., Tariq, U., Alfouzan, F., Alzahrani, N. M., & Ahmad, J. (2022). Dynamic hand gesture recognition using 3D-CNN and LSTM networks. Computers, Materials & Continua, *70*(3), 4675– 4690. https://doi.org/10.32604/cmc.2022.019586
  22. Santhoshkumar, R., & Geetha, M. K. (2019). Deep learning approach for emotion recognition from human body movements with feedforward deep convolution neural networks. Procedia Computer Science, *152*, 158– 165. https://doi.org/10.1016/j.procs.2019.05.038
  23. Sarma, D., Kavyasree, V., & Bhuyan, M. K. (2022). Two-stream fusion model using 3D-CNN and 2D-CNN via videoframes and optical flow motion templates for hand gesture recognition. Innovations in Systems and Software Engineering. Advance online publication. https://doi.org/10.1007/s11334-022-00477-z
  24. Sekar, V., & Jawaharlalnehru, A. (2022). Semantic-based visual emotion recognition in videos: A transfer learning approach. International Journal of Electrical and Computer Engineering, *12*(4), 3674– 3683. https://doi.org/10.11591/ijece.v12i4.pp3674-3683Sekar, V., & Jawaharlalnehru, A. (2022). Semantic-based visual emotion recognition in videos: A transfer learning approach. International Journal of Electrical and Computer Engineering, *12*(4), 3674– 3683. https://doi.org/10.11591/ijece.v12i4.pp3674-3683
  25. Song, H., Huang, S., Dong, Y., & Tu, W.-W. (2023). Robustness and generalizability of deepfake detection: A study with diffusion models. arXiv preprint. https://arxiv.org/abs/2309.02218
  26. Telea, A. (2004). An image inpainting technique based on the fast marching method. Journal of Graphics Tools, *9*(1), 23–34.
  27. Xu, G., & Aminu, M. J. (2022). An efficient procedure for removing salt and pepper noise in images. Informatica, *46*(2). https://doi.org/10.31449/inf.v46i2.3530
  28. Zhang, D., Xiao, Z., Li, S., Lin, F., Li, J., & Ge, S. (2024). Learning natural consistency representation for face forgery video detection. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 407–424). Springer. https://doi.org/10.1109/TIFS.2025.3567110
  29. Zhang, M., & Gunturk, B. K. (2008). Multiresolution bilateral filtering for image denoising. IEEE Transactions on Image Processing, *17*(12), 2324–2333. https://doi.org/10.1109/TIP.2008.2006658
  30. Zhang, S., & Karim, M. A. (2002). A new impulse detector for switching median filters. IEEE Signal Processing Letters, *9*(11), 360–363. https://doi.org/10.1109/LSP.2002.805310
Back
SUPERJP
BOOSTERJP
GOJEKPOT
WINSTRIKE69
winstrike69 login link alternatif
WINSTRIKE69
ELANG212
ELANG212
ELANG212
GORI77
GORI77
CLAN4D
DINAMIT4D
VIRAL88
GORI77
VIRAL88
viral88 login link alternatif
VIRAL88
SAMSONBET86
PAKONG86
WINSTRIKE69
WINSTRIKE69
WINSTRIKE69
winstrike69 link alternatif
LINABET69
BOOSTERJP
WINSTRIKE69
WINSTRIKE69
WINSTRIKE69
akun pro thailand
Paito SDY Lotto
WINSTRIKE69
SLOT GACOR
VIRAL4D
WINSTRIKE69
BOOSTERJP
VIRAL88
GOJEKPOT
GOJEKPOT
GORI77
VIRAL4D
WINSTRIKE69
viral88
WINSTRIKE69
WINSTRIKE69
CLAN4D
WINSTRIKE69
VIRAL88
viral88
boosterjp
VIRAL88
WINSTRIKE69
boosterjp
Winstrike69
winstrike69
SAMSONBET86
winstrike69
winstreak 69
winstreak69
winstrik69
winstrike 69
winstreak 69 login
winstrike69
linabet69
WINSTRIKE69
GORI77
jagoan86
gori77
winstrike69
winstrike69
winstrike69
winstrike69
winstrike69
gori77
winstrike69
pakong86
winstrike69
winstrike69
linabet69
viral88
jagoan86
winstrike69
gori77
linabet69
LINABET69
gori77
winstrike69
gori77
winstrike69
gojekpot
gojekpot
gojekpot
kaptenjackpot
superjp
pakong86