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ABSTRACT

Global hyperbolicity is the most important condition on ca structure space-time, which is involved in
problems as cosmic censorship, predictability etc. An open is sai perbolic if, i) for

lity holds on O

is causal future

Each generator of the of ghe future has a past end point on the set one has to impose
some global condition ausal structure. Global hyperbolicity is the strongest and
physically most important c@fcept both in general and special relativity and also in relativistic
cosmology. This notion wé&s introduced by Jean Leray in 1953 (Leray 1953), and developed in
the golden age of general relativity by A. Avez, B. Carter, Choquet-Bruhat, C. J. S. Clarke,
Stephen W. Hawking, Robert P. Geroch, Roger Penrose, H. J. Seifert and others (Sanchez 2010).
This is relevant to Einstein’s theory of general relativity, and potentially to other metric
gravitational theories. In 2003, Antonio N. Bernal and Miguel Sanchez showed that any globally
hyperbolic manifold M has a smooth embedded 3-dimensional Cauchy surface, and furthermore
that any two Cauchy surfaces for M are diffeomorphic (Bernal and Sanchez 2003, 2005).
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Despite many advances on global hyperbolicity however, some questions which affected basic
approaches to this concept, remained unsolved yet. For example, the so-called folk problems of
smoothability, affected the differentiable and metric structure of any globally hyperbolic space-
time M (Sachs and Wu 1977). The Geroch, Kronheimer and Penrose (GKP) causal boundary
introduced a new ingredient for the causal structure of space-times, as well as a new viewpoint
for global hyperbolicity (GKP 1972).

The existence of space-time singularities follows in the form qf future or past incomplete non-
spacelike geodesics in the space-time. Such a singularity wou ise either in the cosmological
scenarios, where it provides the origin of the universe state of the gravitational
collapse of a massive star which has exhausted its nugi€ar fuel providing the pressure gradient
against the inwards pull of gravity (Mohajan 2013c).

In the Schwarzschild metric and the Friedmann cos contained a
space-time singularity where the curvaturg ity are infinite, and knownj@ll the physical
laws would break down there. In the Sgi¥ was present at
r =0 which is the final fate of a mag

can be covered by

where O < R" and is sgid to be a class C'(r >0) if the following conditions are

satisfied. If we choose a p vent) p of coordinates (xl,...,x”) on O and its image ¢(p) of

coordinates (x'l,...,x’”) o0’ then by C" map we mean that the function ¢ is r-times

differential and continuous. If a map is C" for all r>0 then we denote it by C*; also by C°
map we mean that the map is continuous (Hawking and Ellis 1973, Mohajan 2015).

Hausdorff Space: A topological space M is a Hausdorff space if for pair of distinct points
p,q €M there are disjoint open sets U, and U, in M such that peU, and qeU, (Joshi

1996).
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Paracompact Space: An atlas {Ua,¢a} is called locally finite if there is an open set containing
every pe M which intersects only a finite number of the sets U_. A manifold M is called a
paracompact if for every atlas there is locally finite atlas {Oﬁ,://ﬁ} with each O, contained in

some U_. Let V# be a timelike vector, and then paracompactness of manifold M implies that
there is a smooth positive definite Riemann metric K, defined on M (Hawking and Ellis 1973).

Compact Set: A subset A of a topological space M is comdact if every open cover of A is
reducible to a finite cover (Hawking and Ellis 1973).

Tangent Space: A C*-curve in M is a map from an
0 PO 1 .
(ét)mo) which is tangent to a C'-curve A(t) at a poi

smooth functions on M into R and is denoted b

: A curve in a differential manifold.

If {x‘} are local coordinat€s in a neighborhood of p = A(t,) then,

(5" ) L
M)y dt ox

Alt)
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Thus every tangent vector at p € M can be expressed as a linear combination of the coordinates

,..\97 | . Thus the vectors o/ . span the vector space T_. Then the vector
%), 1%0) p

derivates, (%xl)
p

space structure is defined by (aX + BY)f = a(Xf )+ B(Yf ). The vector space T, is also called the

tangent space at the point p.

A metric is defined as;
ds® =g, dx"dx"

where g, is an indefinite metric in the sense that t{iff magnitude of nop.
either positive, negative or zero. Then any vector X i , Spacelike or

non-spacelike respectively if;

9(X,X)<0, g(X,X)=0, g

is a non-orientable manifold. A vector defined at a

ntation comes back with a reversed orientation in
negative directio
2015).

Space-time Manifold: Ge elativity models the physical universe as a 4-dimensional C*
Hausdorff differentiable spéce-time manifold M with a Lorentzian metric g of signature
(—,+,+,+) which is topologically connected, paracompact and space-time orientable. These
properties are suitable when we consider for local physics. As soon as we investigate global
features then we face various pathological difficulties such as, the violation of time orientation,
possible non-Hausdorff or non-papacompactness, disconnected components of space-time etc.
Such pathologies are to be ruled out by means of reasonable topological assumptions only.
However, we like to ensure that the space-time is causally well-behaved. We will consider the
space-time Manifold (M,g) which has no boundary. By the word ‘boundary’ we mean the

17
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‘edge’ of the universe which is not detected by any astronomical observations. It is common to
have manifolds without boundary; for example, for two-spheres S* in R® no point in S? is a
boundary point in the induced topology on the same implied by the natural topology on R*. All
the neighborhoods of any p e S* will be contained within S? in this induced topology. We shall

assume M to be connected i.e., one cannot have M = X UY , where X and Y are two open sets
such that X NY = ¢. This is because disconnected components of the universe cannot interact
by means of any signal and the observations are confined to the connected component wherein
the observer is situated. It is not known if M is simply cdlgected or multiply connected.
Manifold M is assumed to be Hausdorff, which ensures t ess of limits of convergent
sequences and incorporates our intuitive notion of disti pace-time events (Joshi 1996).

face t=0 isa

a

all the vectors in V,.n is called the

lized so that g,,nn” =+1. If g,n*n° =—1 then the

normal vector like everywhere and§8 is called a spacelike hypersurface. If the normal is
spacelike ever gifve magnitude, S is called a timelike hypersurface.

Finally, S is null hyp if the normal n? is null at S (Mohajan 2015).

3. CAUSALITY AND ONOLOGY IN SPACE-TIME (M.9)

In Lorentzian geometry causality plays an important role, as it displays relativistic interpretation
of space-time for both special and general relativity. Causality also appears as a fruitful interplay
between relativistic motivations and geometric developments. Causal space-time is established at
the end of the 1970s, after the works of Carter, Geroch, Hawking, Kronheimer, Penrose, Sachs,
Seifert, Wu and others (Hawking and Sachs 1974). No material particle can travel faster than the
velocity of light. Hence, causality fixes the boundary of the space-time topology.
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We assume that the timelike curves to be smooth; with future-directed tangent vectors
everywhere strictly timelike, including its end-points. A causal curve is a curve in space-time
which is nowhere spacelike. A causal curve is continuous but not necessarily everywhere
smooth; its tangent vectors are either timelike or null. A causal curve will required end-points if
it can be extended as a causal curve either into the past or the future. If a causal curve can be
extended indefinitely and continuously into the past then it is called past-inextensible. The
future-inextensible curve is defined similarly. If a causal curve is both past and future-
inextensible then it is called simply inextensible (Hawking and Penrose 1970). An event X
chronologically precedes another event y, denoted by x <<y, i re is a smooth future directed

The chronological future 17(x) be the set of all poin
from x by future directed timelike curves. We can thi vents that can

One can think of 17(x an be influenced by what happens at x. The
causal future (past)

Also x<<y and y
I*(x) and past 1-(x) of e defined respectively as (Penrose 1972);

1*(x)=J"(x) and 1"(x)=0"(y), where I is a topological boundary and I is the closure of I.
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Chronological future . s

17(x) ~\2
/

Causal future J*(x)

Null geodesic through x

The definitions of p

The boundary of the futur apart from at S itself. If x is in the boundary of the future but is
not in the closure of S theg”1s a past directed null geodesic segment through x lying in the
boundary. Hence the boundary of the future of S is generated by null geodesics that have a future
end point in the boundary and pass into the interior of the future if they intersect another
generator and the null geodesic generators can have past end points only on S (Hawking 1994).

Proposition 1 (Penrose 1972): The chronological future 1%(x) and chronological past 17(x) are
open sets.
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Proof: The chronological future 1%(x) does not contain all the future points of an event x. It

contains only interior points of causal future J*(x), i.e., it does not contain null geodesics of

space-time. Hence 17(x) is an open set. Similarly, past 17(x) is an open set. n

Proposition 2: The causal future J*(x) and causal past J~(x) are neither closed nor open.
Proof: The causal future J*(x) is closed, since it contains all the points of timelike and null

geodesics. But from the figure 2 we have seen that if a point s §§.J *(x) is deleted then J*(x) is

no more closed. On the other hand J*(x) is not open si ly contains interior of the
space-time but also the boundary i.e., it also contains ts of null geodesics. Hence, the causal
future J*(x) is neither closed nor open. Similarly t ispicither closed nor
open. m

4. THE GLOBALLY HYPERBO

Now we provide some definitions bg lic space-time.
Causally Convex Set

Let Sand T be open s

Future Set and

An open subset F is a j# 17(F)=F. The past set P is defined by 17(P)=P. The

boundary of a future set F e of all events x such that 1 (x)c F but xg F . If xe F then
of course x¢ F ,since F i open set.

Achronal Set

A set S in M is said to be achronal if no two points x,y €S may be joined by a piecewise
timelike curve i.e., there do not exist x,y €S such that y € I*(x). Let F be a future set, then the
boundary of F is a closed, achronal C°-manifold that is a 3-dimensional embedded hypersurface.

21
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Domain of Dependence of a Set

The future domain of dependence (the future Cauchy development) of a spacelike three-surace S,
denoted by D*(S), is defined as the set of all points xe M such that every past-inextendible

non-spacelike curve from x intersects S, i.e., D*(S) = {x: every past-inextensible timelike curve
through x meets S}. It is clear that S<D*(S)cJ*(S) and S being achronal,
D*(S)n17(S)=¢. The past domain of dependence D~(S) is defined similarly. The full domain

Cauchy Surface

Let S be a closed achronal set. The edge of S is defin ch that every
neighborhood of x contains y e 1*(x) and ' i z to y which
edge. So that

ain of dependence is all of the space-time,

every inextensible non-spacelike curve in

once and exactly once if S is a Cauchy surface. The
relationship between th rbolicity of M and the notion of Cauchy surface is shown in
figure 3 (Hawking and Elli
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q

Figure 3: The spacelike hypersurface S is a Cauchy
of S, all past non-spacelike curves from p intersect
curves from any point q in past of S.

ty is a certain condition on the causal structure of a
ected Lorentzian manifold with boundary, we say it
ally hyperbolic. Penrose has called globally hyperbolic
le space-times” (Wald 1984). A space-time (M , g) which
admits a Cauchy surface is globally hyperbolic.

A space-time (M ,g) which admits a Cauchy surface is called globally hyperbolic. An open set
O is said to be globally hyperbolic if, i) for every pair of points x and y in O the intersection of
the future of x and the past of y has compact closure i.e., if a space-time (M ,g) is said to be

globally hyperbolic if the sets J*(x)nJ(y) are compact for all x,yeM (i.e., no naked

singularity can exist in space-time topology). In other words, it is a bounded diamond shaped
region (diamond-compact) and ii) strong causality holds on O i.e., there are no closed or almost
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closed time like curves contained in O (figure 3). Then it also satisfies that J*(x) and J~(y) are
closed Vx,y e M. More precisely, consider two events x, y of the space-time (M ,g), and let

C(x, y) be the set of all the continuous curves which are future-directed and causal and connect x
with y (Hawking and Ellis 1973).

Proposition 3: If a globally hyperbolic space-time (M, g) is such that sets J*(x)~J (y) are
compact for all x,y e M, then J*(x) and J~(y) are closed V¥x

Proof: Suppose J +(x) is not a closed set in a globally h i -time (M : g). Now let an
event p e J*(x)-J"(x) and an another event q e | *(f where 17(x) is an open set. Now a set

for a sequence of points {pn}—> p. On the other han e finite n. We

know {p, } is a subset of compact set J*(x)nJ(y) a to event p@But p does not
meet J (y) (figure 4). We have arri adiction. Hence J*(x) ¥ a closed set.
Similarly, J~(y) is closed a set. m

If S, and S, are any two act subsets, J*(S,)nJ(S,) must be compact. Geroch (1970)
proved that global hyperbeficity is equivalent to the existence of a topological Cauchy surface
and that the space-time manifold is homeomorphic to the product manifold MxX, where X is the
topological Cauchy surface. A globally hyperbolic space-time must be causally simple. In
globally hyperbolic space-time strong causality must exists. Globally hyperbolicity is strong on
M which uniquely fixes the overall topology of the space-time.

Minkowski space-time, de Sitter space-time and the exterior Schwarzschild solution, Friedmann,
Robertson-Walker (FRW) cosmological solutions and the steady state models are all globally

24
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hyperbolic. The Kerr solution is not globally hyperbolic, since it represents rotating model i.e.,
not static model. On the other hand anti de Sitter space-time and the Godel universe are not
globally hyperbolic. The global hyperbolicity of M is closely related to the future or past
development of initial data from a given spacelike hypersurface (Joshi 1996).

The physical significance of global hyperbolicity comes from the fact that it implies that there is
a family of Cauchy surfaces X(t) for globally hyperbolic open set O. A Cauchy surface for O is a
spacelike or null surface that intersects every timelike curve in Q once and only once. Let x and y
be two points of O that can be joined by a timelike or null cur en there is a timelike or null
geodesic between x and y which maximizes the length r null curves from x to y
(Hawking 1994).

4.2 Cauchy Horizons of a Set

Let S be a partial Cauchy surface. Then D’(S);t M and N must b@sl proper subset

that the future
opment would have

evelopment is assumed

compact. The H*(S) and H(S) which are
borizons of S. We can write (Hawking and

H(S) is defined
1*[H*(s)]=1"[s]-D*

The Cauchy horizon will b€ generated by null geodesic segments without past end points. Even
though M may not be globally hyperbolic and S is not a Cauchy surface, the region Int(D*(S)) or

Int(D‘(S)) is globally hyperbolic in its own right and the surface S serves as a Cauchy surface

for the manifold Int(N). Thus H*(S) or H(S) represents the failure of S to be global Cauchy
surface for M (figure 5).
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If every geodesic can be extended to arbitrary values of its affine parameter then it is
geodesically complete. If a timelike or causal curve can be extended indefinitely and
continuously into the past (future) then it is called past-inextensible (future-inextensible).

Point rem

Figure 5: The
globally hyperbolic. i S8BT meet S in the past. The event p e D*(S). The Cauchy

horizon is the boundary region which consists of points not in D*(S).

In globally hyperbolic spag€-times, there is a finite upper bound on the proper time lengths of
non-spacelike curves two chronologically related events. Of course there is no lower limit of
length for such curves except zero, because the chronologically related events can always be
joined using broken null curves which could give an arbitrary small length curve between them.
If S is Cauchy surface in globally hyperbolic space-time M, then for any point p in the future of
S, there is a past directed timelike geodesic from p orthogonal to S which maximizes the lengths
of all non-spacelike curves from p to S (figure 6).

P
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ir of causally

ny two points
fact such a geodesic not be unique
esics. Oppasi

(4)

By (4) the Schwarzschild solution in (t,r,8,¢) coordinates is given by (Mohajan 2013b);

-1
ds? = (1-2_”‘) dr? +r2(d6? +sin 0 d¢2)—c2(1—2—mj dt? (5)
r r
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which is extensively used for experimental verification of general relativity.

From the Schwarzschild metric (5), there are singularities at r=0 and r =2m, because one of
the g** or g, is not continuously defined. Here r=0 is a real singularity in the sense that

along any non-spacelike trajectory falling into the singularity as r — o the Kretschman scalar
a=R""R tends to infinity and r=2m is a coordinate singularity (Kruskal 1960 and

uvyo

Szekeres 1960).

In (t,r,8,¢) coordinates the Robertson-Walker (R-W) lin

(")

which is singular o any observer starting in the region t>0 tries to reach
the surface t=0 by tr timelike geodesics, he will not reach at t=0 in any finite
time, since the surface is ly far into the future. If we put t'=In(~t) in t<O then (7)
becomes;

ds® = —dt"* + dx® + dy® + dz° (8)

with —co<t’'<oo which is Minkowski metric and there is no singularity at all, which is a
removable singularity like Schwarzschild singularity at r =2m. Let us consider a non-spacelike
geodesic which reaches the singularity in a proper finite time. Such a geodesic will have not any
end point in the regular part of the space-time. A timelike geodesic which, when maximally
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extended, has no end point in the regular space-time and which has finite proper length, is called
timelike geodesically incomplete (Clarke 1986).

A point pe M is said to be a singular point on a geodesic y of the congruence if expansion &
is infinity on y at p. A space-time is singular if it contains an incomplete curve y: [0,a)—> M
such that there is no extension &:M — M’ for which @0y is extensible. Hence the region

r >2m in the Schwarzschild solution (5) is not singular, merely incomplete. Singular points of
congruences are points where infinitesimally neighboring geode8iics meet (Mohajan 2013c).
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